Reaction of α-Metallated N-Acyl-λ⁵-Phosphazenes with Aryl Cyanides

José Barluenga,* Miguel Ferrero, Fernando Lopez, and Francisco Palacios Departamento de Química Organometalica, Universidad de Oviedo, 33071 Oviedo, Spain

Metallated N-acyl- λ^5 -phosphazenes react with aryl cyanide to give imino- λ^5 -phosphazenes (6) and (7), in which nitrile insertion into the phosphorus–carbon bond of N-acyl- λ^5 -phosphazenes (2) and (3) takes place. Subsequent reactions of the imino- and enamino-N-ethoxycarbonyl- λ^5 -phosphazenes (7) and (9) afford the phosphine oxide derivatives (13) and (11), through a cyclocondensation and hydrolysis sequence.

 λ^5 -Phosphazenes were first prepared in 1919.¹ Applications of these species have attracted growing interest in recent years because of their widespread utility; *i.e.*, as organic semiconductors,² as backbone polymer precursors,³ and as ligands in transition-metal complexes;⁴ they have also been used in natural product⁵ and phosphorus-containing heterocycle⁶ synthesis. However, most reactions of these compounds involve the phosphorus-nitrogen double bond.^{5,6}

Previously, we have reported on the the ability of α -metallated N-aryl- λ^5 -phosphazenes to react with electrophiles, affording acyclic⁷ and heterocyclic⁸ derivatives. In this context, C-functionalised λ^5 -phosphazenes are valuable intermediates in organic synthesis.^{9,10} However, though a new synthetic method for N-functionalised λ^5 -phosphazenes was recently reported,¹¹ very little is known about their reactivity. Continuing our interest in the chemistry of λ^5 -phosphazenes, we describe here the reaction of α -metallated N-acyl derivatives with aryl cyanides.

Results and Discussion

Primary (Z)- β -enamino- λ^5 -phosphazenes (5) were obtained through α -lithiation of N-aryl derivatives (1) followed by reaction with nitriles,⁷ in a similar way to that recently reported for reactions of metallated 1,3-dithianes.¹² However, λ^5 -phosphazenes with electron-withdrawing substituents (2) and (3), obtained through the classical Staudinger reaction¹ using alkyldiphenylphosphines and N-acyl azides in ether, show different reactivity. Thus, when compounds (2) and (3) were treated with lithium di-isopropylamide (LDA) followed by addition of aryl cyanides and aqueous work-up, β -enamino compounds (8) and (9) were not obtained, but imino- λ^5 phosphazenes (6) and (7) were isolated instead (see Table and Scheme 1).

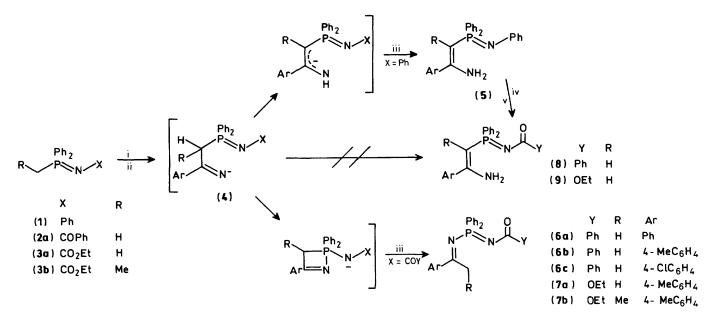
The decreasing P-H and P-C coupling constants¹³ for the methyl group observed in the ¹H and ¹³C n.m.r. spectra of (6a)

 $({}^{4}J_{PH} 1.6 \text{ Hz}, {}^{3}J_{PC} 13.8 \text{ Hz})$ relative to those of the starting *N*-benzoyl- λ^{5} -phosphazene (**2a**) (${}^{2}J_{PH} 13.2 \text{ Hz}, {}^{1}J_{PC} 63 \text{ Hz}$), is consistent with a shift of the methyl group from the α - to the γ -position with respect to the phosphorus atom and, thus, with nitrile insertion into the phosphorus–carbon single bond. The isolation of the fragmentation products of (**6a**) (aminodiphenyl-phosphine oxide, acetophenone, and benzamide) by acid hydrolysis confirmed the structure of compounds (**6**). In the case of *P*-benzyl *N*-acyl derivatives (**2b**) and (**3c**) (R = Ph), however, no reaction products were observed, probably due to the lower reactivity of the corresponding anion.

$$(6a) \xrightarrow{2M \text{H}_2\text{SO}_4} \text{Ph}_2\text{PONH}_2 + \text{PhCONH}_2 + \text{PhCOMe}$$

$$R \xrightarrow{\text{Ph}_2} R \xrightarrow{\text{Ph}_2} X$$

These results could be explained through rearrangement¹⁴ of the metallated intermediate (4), which probably involves formation of an unstable cyclic adduct¹⁵ containing pentavalent phosphorus, to give product (6) after treatment with water. The conjugation of electron-withdrawing substituents on λ^5 -phosphazenes (X = COPh, CO₂Et) could stabilise the proposed intermediates.


This new behaviour observed in λ^5 -phosphazenes allows the isolation of new imino- λ^5 -phosphazene species resulting from nitrile insertion into acyclic phosphorus–carbon single bonds. A related reaction has been previously reported involving cyclic phosphine oxides.¹⁴

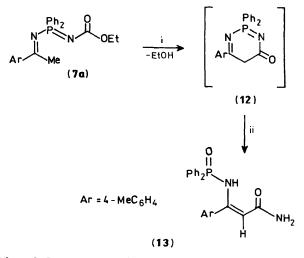
Primary (Z)- β -enamines derived from N-acyl- λ^5 -phosphazenes (8) and (9) are not available from α -metallated

Table. N-Acyl- λ^5 -phosphazenes (2) and (3) and rearrangement products (6) and (1 (7)
--	-------

Compound	R	Ar	Y	Yield (%) ^a	M.p. (°C
(2a)	Н			94	95–96
(2b)	Ph			95	138-139
(3a)	Н			93	76–77
(3b)	Me			96	80-81
(3c)	Ph			93	95–96
(6a)	Н	Ph	Ph	78	132-133
(6b)	Н	4-MeC ₆ H₄	Ph	80	184–185
(6c)	н	4-ClC ₆ H₄	Ph	83	183–184
(7a)	н	4-MeČ ₆ H₄	OEt	82	125-126
(7b)	Me	$4-\text{MeC}_{6}H_{4}$	OEt	76	117-118


^a Isolated yields.

Scheme 1. Reagents and conditions: i, LDA-THF, -70 °C; ii, ArCN; iii, water; iv, LiAlH₄-THF; v, N₃COY-ether


compounds (2) and (3) with nitriles, but they were prepared by lithium aluminium hydride (LAH) reduction of intermediate (5) followed by treatment with acyl azides.⁹ Spectral data of compounds (8) are markedly different from those observed for the isomer (6b). Thus, in the ¹H n.m.r. spectrum, the vinyl hydrogen of (8) resonates at δ 4.31 as a doublet with a coupling constant of 17.3 Hz, while the ¹³C n.m.r. spectrum shows an absorption at 73.0 (¹J_{PC} 107.1 Hz) assignable to the carbon bonded to phosphorus. These values are similar to those previously reported for primary B-enamino- λ^5 -phosphazenes.^{7,9}

viously reported for primary β -enamino- λ^5 -phosphazenes.^{7,9} The multifunctional character of *N*-ethoxycarbonyl β enamino- λ^5 -phosphazenes (9) was shown by thermal intramolecular cyclocondensation⁹ under anhydrous conditions to give 1,3,4-diaza- λ^5 -phosphinin-2-ones (10). However, the treatment of compounds (9) with base (KH) at 60 °C followed by methanolysis and aqueous work-up afforded the corresponding acyclic phosphine oxide (11). This result suggests that the cyclic derivative (10) undergoes hydrolysis under the reaction conditions, leading to (11); in fact, reaction of compound (10) with KH under similar reaction conditions afforded the product (11) (Scheme 2).

Scheme 2. Reagents and conditions: i, 150 °C; ii, KH-THF, 60 °C; iii, MeOH-water

The C_{α} -hydrogen of the imino moiety is known to be labile towards Lewis acids¹⁶ and, therefore, cyclocondensation of imino- λ^5 -phosphazenes (7) by means of aluminium chloride was also attempted. Thus, the reaction of compound (7a) with aluminium chloride and aqueous work-up gave the amino phosphine oxide derivative (13), resulting probably by electrocyclisation process of the AlCl₃-imino- λ^5 -phosphazene complex followed by hydrolysis of the cyclic compound (12) (Scheme 3).

Scheme 3. Reagents and conditions: i, AlCl3-THF, 80 °C; ii, water

In conclusion, we have shown that aryl cyanides were inserted into the phosphorus-carbon single bond of α -metallated *N*-acyl- λ^5 -phosphazenes. This method allowed us to obtain imino- λ^5 phosphazenes for the first time, to the best of our knowledge. It is also worth noting that phosphorylated imines show oncolitic activity.¹⁷ On the other hand, the multifunctional character of *C*- and *N*-functionalised λ^5 -phosphazenes is reported. Thus, intramolecular cyclisation of *P*-imino and β -enamino- λ^5 phosphazenes (7) and (9) affords the acyclic phosphine oxide isomers (13) and (11) respectively.

Experimental

General.—M.p.s were taken on samples in open capillary tubes using a Büchi melting-point apparatus and are uncorrected. N.m.r. spectra were obtained using a Varian FT-80 n.m.r. spectrometer with deuteriated chloroform as solvent; chemical shifts are reported in p.p.m. downfield from internal SiMe₄ for ¹H and ¹³C n.m.r. or from H₃PO₄ 85% in the case of ³¹P n.m.r. I.r. spectra were recorded in KBr on a Perkin-Elmer 298 spectrophotometer. Microanalyses were performed on a Perkin-Elmer model 240 instrument and mass spectra were obtained using a Hewlett-Packard 5930A spectrometer. Compounds (5) and (9) were obtained according to the literature methods.^{7,9}

Synthesis of N-Acyl Alkyldiphenyl- λ^5 -phosphazenes (2) and (3). General Procedure.—N-Benzoyl-P-methyldiphenyl- λ^5 -phosphazene (2a). In a dried, argon-filled round-bottomed flask, a solution of benzoyl azide (2.9 g, 20 mmol) in dry ether was added dropwise to a cooled (0 °C) solution of methyldiphenyl phosphine (20 mmol) in ether. After being stirred for 1 h, the mixture was left to reach room temperature and was then stirred until N₂ evolution ceased. The solvent was evaporated off and the resulting oil was taken up in ether (10 ml) until formation of a crystalline solid, which was recrystallised from hexane-methylene dichloride to give compound (2a) (6.0 g, 94%), m.p. 95— 96 °C (Found: C, 74.9; H, 5.6; N, 4.2. C₂₀H₁₈NOP requires C, 75.22; H, 5.68; N, 4.39%); v_{max}.(KBr) 1 340 (P=N) and 1 610 cm⁻¹ (C=O); $\delta_{\rm H}$ (CDCl₃) 2.31 (3 H, d ²J_{PH} 13.2 Hz, Me) and 7.12—8.31 (15 H, m, Ph); $\delta_{\rm C}$ (CDCl₃) 11.4 (d, ¹J_{PC} 63.0 Hz, Me), 125.5—137.7 (C_{arom}), and 175.8 (CO); $\delta_{\rm P}$ (CDCl₃) 21.5.

N-Benzoyl-P-benzyldiphenyl- λ^5 -phosphazene (**2b**). M.p. 138— 139 °C (Found: C, 79.1; H, 5.8; N, 3.7. C₂₆H₂₂NOP requires C, 78.97; H, 5.61; N, 3.54%); v_{max}(KBr) 1 340 (P=N) and 1 600 cm⁻¹ (C=O); δ_H(CDCl₃) 4.22 (2 H, d, ²J_{PH} 14.1 Hz, CH₂) and 6.81—8.35 (20 H, m, Ph); δ_C(CDCl₃) 31.7 (d, ¹J_{PC} 51.2 Hz, CH₂), 125.6—138.4 (C_{arom}), and 177.3 (CO); δ_P(CDCl₃) 27.2.

N-Ethoxycarbonyl-P-methyldiphenyl- λ^5 -phosphazene (3a). M.p. 76—77 °C (Found: C, 66.7; H, 6.2; N, 4.7. C₁₆H₁₈NO₂P requires C, 66.89; H, 6.31; N, 4.87%); ν_{max}.(KBr) 1 280 (P=N) and 1 620 cm⁻¹ (C=O); δ_H(CDCl₃) 1.22 (3 H, t, ³J_{HH} 6.9 Hz, Me), 2.20 (3 H, d, ²J_{PH} 13.2 Hz, Me), 4.0 (2 H, q, CH₂), and 7.24 – 7.84 (10 H, m, Ph); δ_C(CDCl₃) 10.9 (d, ¹J_{PC} 65.4 Hz, Me), 13.0 (Me), 58.8 (d, ⁴J_{PC} 3.3 Hz, CH₂), 125.2—130.3 (C_{arom}.), and 160.5 (CO); δ_P(CDCl₃) 22.5.

N-Ethoxycarbonyl-P-ethyldiphenyl- λ^5 -phosphazene (3b). M.p. 80—81 °C (Found: C, 67.6; H, 6.5; N, 4.6. C₁₇H₂₀NO₂P requires C, 67.76; H, 6.69; N, 4.65%); v_{max}.(KBr) 1 280 (P=N) and 1 590 cm⁻¹ (C=O); δ_H(CDCl₃) 1.14 (3 H, dt, ³J_{PH} 15.7 Hz, ³J_{HH} 7.9 Hz, Me), 1.24 (3 H, t, ³J_{HH} 6.9 Hz, Me), 2.63 (2 H, dd, ²J_{PH} 12.6 Hz, ³J_{HH} 7.9 Hz, CH₂), and 7.24—7.87 (10 H, m, Ph); δ_C(CDCl₃) 4.5 (Me), 13.6 (Me), 17.7 (d, ¹J_{PC} 63 Hz, CH₂), 59.6 (d, ⁴J_{PC} 2.6 Hz, OCH₂), 126.7—130.8 (C_{arom}.), and 161.0 (CO); δ_P(CDCl₃) 28.2.

P-Benzyldiphenyl-N-ethoxycarbonyl-λ⁵-phosphazene (3c). M.p. 95—96 °C (Found: C, 72.5; H, 5.9; N, 3.8. $C_{22}H_{22}NO_2P$ requires C, 72.72; H, 6.10; N, 3.85%); v_{max} .(KBr) 1 280 (P=N) and 1 600 cm⁻¹ (C=O); δ_{H} (CDCl₃) 1.26 (3 H, t, ³J_{HH} 6.9 Hz, Me), 4.08 (2 H, q, CH₂), 4.20 (2 H, d, ²J_{PH} 13.2 Hz, CH₂), and 6.67—7.89 (15 H, m, Ph); δ_{C} (CDCl₃) 13.6 (Me), 31.3 (d, ¹J_{PC} 53.5 Hz, CH₂), 59.7 (d, ⁴J_{PC} 2.1 Hz, OCH₂), 123.6—130.9 (C_{arom.}), and 161.0 (CO); δ_{P} (CDCl₃) 23.9.

Synthesis of N-Acyl-P-iminodiphenyl- λ^5 -phosphazenes (6) and (7). General Procedure.—1-Benzoyl-2,2,4-triphenyl-1,3-diaza- $2\lambda^5$ -phosphapenta-1,3-diene (6a). In a dried, argon-filled roundbottomed flask, a solution of N-benzoyl-P-methyldiphenyl- λ^5 phosphazene (2a) (1.6 g, 5 mmol) in tetrahydrofuran (THF) (20 ml) was added to a solution of LDA (5 mmol) in THF at -20 °C and the mixture was stirred for 0.5 h. The reaction mixture was cooled at -70 °C and then a solution of benzonitrile (5 mmol) in THF (10 ml) was added. When the mixture had attained room temperature it was stirred for 12 h and then poured into ice-water, extracted with methylene dichloride (100 ml), and the extract was dried (Na₂SO₄). Evaporation of the solvent afforded a crude solid, which was recrystallised from hexane-CH₂Cl₂ to yield *compound* (6a) (1.6 g, 78%), m.p. 132-133 °C (Found: C, 76.5; H, 5.3; N, 6.7. C₂₇H₂₃N₂OP requires C, 76.76; H, 5.49; N, 6.63%); v_{max}.(KBr) 1 330 (P=N), 1 600 (C=N), and 1 630 cm⁻¹ (C=O); $\delta_{\rm H}$ (CDCl₃) 2.70 (3 H, d, ⁴J_{PH} 1.6 Hz, Me) and 7.16-8.28 (20 H, m, Ph); $\delta_{\rm C}$ (CDCl₃) 22.6 (d, ³J_{PC} 13.8 Hz, Me), 127.4-139.4 (C_{arom}), 176.3 (d, ²J_{PC} 7.9 Hz, CO), and 183.5 (d, ²J_{PC} 7.2 Hz, C=N); $\delta_{\rm P}$ (CDCl₃) 15.2; *m/z* 422 (*M*⁺, 2%), 345 (20), 319 (51), and 201 (100).

1-Benzoyl-2,2-diphenyl-4-(p-tolyl)-1,3-diaza-2λ⁵-phosphapenta-1,3-diene (**6b**), m.p. 184—185 °C (Found: C, 76.9; H, 5.8; N, 6.5. C₂₈H₂₅N₂OP requires C, 77.05; H, 5.77; N, 6.42%); v_{max}. 1 330 (P=N), 1 600 (C=N), and 1 630 cm⁻¹ (C=O); $\delta_{\rm H}$ (CDCl₃) 2.39 (3 H, s, p-Me), 2.75 (d, ⁴J_{PH} 1.6 Hz, Me), and 7.00—8.47 (19 H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 21.3 (p-Me), 22.3 (d, ³J_{PC} 13.8 Hz, Me), 127.4—143.3 (C_{arom}), 176.0 (d, ² J_{PC} 7.6 Hz, CO), 183.2 (d, ²J_{PC} 7.2 Hz, C=N); $\delta_{\rm P}$ (CDCl₃) 15.2; m/z 436 (M⁺, 3%), 359 (100), and 333 (53).

1-Benzoyl-4-(p-chlorophenyl)-2,2-diphenyl-1,3-diaza-2λ⁵phosphapenta-1,3-diene (**6c**). M.p. 183—184 °C (Found: C, 70.9; H, 4.75; N, 6.0. $C_{27}H_{22}ClN_2OP$ requires C, 70.98; H, 4.85; N, 6.13%); v_{max} .(KBr) 1 330 (P=N), 1 600 (C=N), and 1 630 cm⁻¹ (C=O); $\delta_{H}(CDCl_3)$ 2.69 (3 H, d, ${}^4J_{PH}$ 1.7 Hz, Me), and 7.34—8.30 (19 H, m, ArH); $\delta_{C}(CDCl_3)$ 22.4 (d, ${}^3J_{PC}$ 13.6 Hz, Me), 127.6— 138.9 ($C_{arom.}$), 176.3 (d, ${}^2J_{PC}$ 7.8 Hz, CO), 182.0 (d, ${}^2J_{PC}$ 7.0 Hz, C=N); $\delta_{P}(CDCl_3)$ 16.0; m/z 457 (M^+ , 2%), 355 (9), 353 (28), and 201 (100).

1-Ethoxycarbonyl-2,2-diphenyl-4-(p-tolyl)-1,3-diaza-2λ⁵phosphapenta-1,3-diene (**7a**). M.p. 125–126 °C (Found: C, 71.4; H, 6.35; N, 7.05. C₂₄H₂₅N₂O₂P requires C, 71.21; H, 6.23; N, 6.93%); v_{max.}(KBr) 1 280 (P=N), 1 600 (C=N), and 1 620 cm⁻¹ (C=O); $\delta_{\rm H}$ (CDCl₃) 1.16 (3 H, t, ³J_{HH} 7.9 Hz, Me), 2.41 (3 H, s, *p*-Me), 2.79 (3 H, d, ⁴J_{PH} 1.6 Hz, Me), 4.04 (2 H, q, CH₂), and 7.08–8.12 (14 H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 13.6 (Me), 20.3 (*p*-Me), 21.5 (d, ³J_{PC} 14.5 Hz, Me), 59.7 (d, ⁴J_{PC} 1.6 Hz, OCH₂), 127.0– 142.5 (C_{arom}), 160.4 (CO), and 182.4 (d, ²J_{PC} 7.3 Hz, C=N); $\delta_{\rm P}$ (CDCl₃) 15.3; *m*/z 404 (*M*⁺, 2%) and 359 (100).

1-Ethoxycarbonyl-2,2-diphenyl-4-(p-tolyl)-1,3-diaza-2λ⁵phosphahexa-1,3-diene (**7b**). M.p. 117—118 °C (Found: C, 71.6; H, 6.4; N, 6.5. $C_{25}H_{27}N_2O_2P$ requires C, 71.74; H, 6.51; N, 6.70%); v_{max} (KBr) 1 280 (P=N), 1 610 (C=N), and 1 630 cm⁻¹ (C=O); δ_{H} (CDCl₃) 1.16 (6 H, t, 2Me), 2.43 (3 H, s, p-Me), 3.24 (2 H, dq, ³J_{HH} 6.3 Hz, ⁴J_{PH} 1.5 Hz, CH₂), 4.0 (2 H, q, OCH₂), and 6.85—8.16 (14 H, m, ArH); δ_{C} (CDCl₃) 11.4 (Me), 13.5 (Me), 20.1 (*p*-Me), 28.4 (d, ³J_{PC} 12.6 Hz, CH₂), 59.6 (d, ⁴J_{PC} 1.5 Hz, OCH₂), 126.9—142.2 (C_{arom.}), 160.3 (CO), and 187.5 (d, ²J_{PC} 7.1 Hz, C=N); δ_{P} (CDCl₃) 14.0; *m*/*z* 418 (*M*⁺, 20%), 373 (74), 201 (59), and 153 (100).

Hydrolysis of Compound (6a). Fragmentation Products.—A solution of compound (6a) (2.1 g, 5 mmol) in a mixture of dioxane (30 ml) and $2M H_2SO_4$ (30 ml) was heated 6 h at 50 °C. After aqueous work-up and extraction with methylene dichloride, the organic phase afforded aminodiphenylphosphine oxide (0.9 g), m.p. 190—191 °C (lit.,¹⁸ 190—192 °C) and acetophenone (0.4 g). The remaining aqueous phase was treated with 3M KOH until it became alkaline and was then extracted with CH₂Cl₂; evaporation of the extract led to benzamide (0.5 g), m.p. 128—129 °C.

Synthesis of 1-Benzoyl-2,2-diphenyl-4-(p-tolyl)-1,5-diaza-2 λ^5 -phosphapenta-1,3-diene (8).—This compound was prepared by

the same method as derivatives (2) with solutions of benzoyl azide (0.75 g, 5 mmol) in ether (10 ml) and (β -amino- β -tolylvinyl)diphenylphosphine⁹ (1.6 g, 5 mmol) in ether (10 ml) and gave *compound* (8) (2.0 g, 92%), m.p. 162—163 °C (from hexane-methylene dichloride) (Found: C, 76.9; H, 5.6; N, 6.4. C₂₈H₂₅N₂OP requires C, 77.05; H, 5.77; N, 6.42%); v_{max}(KBr) 1 360 (P=N), 1 650 (C=C-N), and 3 200 and 3 380 cm⁻¹ (NH₂); $\delta_{\rm H}$ (CDCl₃) 2.35 (3 H, s, *p*-Me), 4.31 (1 H, d, ²J_{PH} 17.3 Hz, CH=), 6.67 (1 H, s, NH), and 7.04—8.39 (20 H, m, ArH + NH); $\delta_{\rm C}$ -(CDCl₃) 20.6 (*p*-Me), 73.0 (d, ¹J_{PC} 107.1 Hz, C-1), 126.2—140.3 (C_{arom.}), 162.7 (C-2), and 176.6 (d, ²J_{PC} 6.3 Hz, CO); $\delta_{\rm p}$ (CDCl₃) 13.4; *m*/z 436 (*M*⁺, 22%), 359 (43), 332 (52), and 185 (100).

Synthesis of Diphenyl[2-(p-tolyl)-2-ureidovinyl]phosphine Oxide (11).—To a suspension of KH (5 mmol) in THF (10 ml) was added dropwise, under argon, compound (9) ° or (10) ° (5 mmol) in THF (10 ml). The mixture was heated for 6 h at 60 °C and quenched with MeOH (20 ml) and water (20 ml). After extraction with methylene dichloride (100 ml), drying (Na₂SO₄) and evaporation of the extract gave crude *compound* (11) (1.5 g, 81%), m.p. 226—227 °C (from MeOH) (Found: C, 70.4; H, 5.7; N, 7.3. $C_{22}H_{21}N_2O_2P$ requires C, 70.20; H, 5.62; N, 7.44%); v_{max} .(KBr) 1 180 (P=O), 1 600, 1 720 (C=O), and 3 200, 3 320, 3 400 cm⁻¹ (NH); δ_{H} (CDCl₃) 2.3 (3 H, s, *p*-Me), 5.14 (1 H, d, ²J_{PH} 20 Hz, CH=), 5.4 (2 H, m, NH₂), 7.05—7.80 (14 H, m, ArH), and 9.78 (1 H, s, NH); δ_{C} (CDCl₃) 21.2 (*p*-Me), 96.9 (d, ¹J_{PC} 104.0 Hz, =CHP), 126.7—139.3 (C_{arom}), 155 (CO), and 158.1 (CH=C); δ_{P} (CDCl₃) 21.1; *m*/z 376 (*M*⁺, 3%), 333 (85), 332 (90), and 77 (100).

Synthesis of 3-(Diphenylphosphoramido)-3-(p-tolyl)acrylamide (13).—To a solution of compound (7a) (2.0 g, 5 mmol) in THF (20 ml) was added aluminium chloride (5 mmol) and the mixture was heated for 12 h at 80 °C. After aqueous work-up and extraction with methylene dichloride, the extract was evaporated to give compound (13) (1.54 g, 82%), m.p. 182— 183 °C (from hexane–CH₂Cl₂) (Found: C, 70.0; H, 5.5; N, 7.3. C₂₂H₂₁N₂O₂P requires C, 70.20; H, 5.62; N, 7.44%); v_{max}(KBr) 1220 (P=O), 1 630, 1 730 (C=O), 3 280, and 3 410 cm⁻¹ (NH); δ_H[(CD₃)₂SO] 2.2 (3 H, s, p-Me), 5.1 (1 H, d, ⁴J_{PH} 2.0 Hz, CH=), 6.80—7.80 (10 H, m, ArH + NH₂), and 11.61 (1 H, d, ²J_{PH} 12.5 Hz, NH); δ_C[(CD₃)₂SO] 21.0 (p-Me), 97.6 (d, ³J_{PC} 4.9 Hz, CH=), 126.7—138.0 (C_{arom}), 154.9 (d, ²J_{PC} 1.2 Hz, C), and 169.8 (CO); δ_P(CDCl₃) 20.1; m/z 376 (M⁺, 30%), 333 (70), 332 (70), and 201 (100).

Acknowledgements

We thank the Comisión Asesora de Investigación Científica y Técnica for the financial support and we are also indebted to the referees for interesting suggestions concerning some mechanistic aspects of the reported reactions.

References

- 1 H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635.
- 2 M. R. Bryce, A. J. Moore, J. H. Kim, Z. X. Liu, and H. J. Nowak, Tetrahedron Lett., 1987, 28, 4465.
- 3 H. R. Allcock, Chem. Eng. News, 1985, 63, (11), 22.
- 4 W. Keim, A. Behr, B. Gruber, B. Hoffmann, F. H. Kowaldt, U. Kürschner, B. Limbäker, and F. P. Sistig, *Organometallics*, 1986, 5, 2356; R. E. Cramer, F. Edelman, A. L. Mori, S. Roth, J. W. Gilje, K. Tatsumi, and A. Nakamura, *ibid.*, 1988, 7, 841.
- 5 M. D. Bachi and J. Vaya, J. Org. Chem., 1979, 44, 4393; J. Zaloom, M. Calandra, and D. C. Roberts, *ibid.*, 1985, 50, 2603; D. M. B. Hickey, A. R. MacKenzie, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 921.
- 6 J. Barluenga, F. Lopez, and F. Palacios, J. Chem. Soc., Chem. Commun., 1985, 1681; 1986, 1574.
- 7 J. Barluenga, F. Lopez, and F. Palacios, J. Chem. Res., 1985, (S) 211;
 (M) 2541; J. Barluenga, F. Lopez, F. Palacios, F. H. Cano, and M. C. Foces-Foces, J. Chem. Soc., Perkin Trans. 1, 1988, 2329.
- 8 J. Barluenga, F. Lopez, and F. Palacios, *Tetrahedron Lett.*, 1987, 28, 4327.
- 9 J. Barluenga, F. Lopez, and F. Palacios, *Tetrahedron Lett.*, 1987, 28, 2875.
- 10 U. G. Wettermark, P. Wisian-Neilson, G. M. Scheide, and R. H. Neilson, Organometallics, 1987, 6, 959 and references cited therein.
- 11 S. Bittner, Y. Assaf, P. Krief, M. Pomerantz, B. T. Ziemnicka, and C. G. Smith, *J. Org. Chem.*, 1985, **50**, 1712; S. Bittner, M. Pomerantz, Y. Assaff, P. Krief, S. Xi, and M. K. Witczak, *ibid.*, 1988, **53**, 1.
- 12 P. C. B. Page, M. B. van Niel, and P. H. Williams, J. Chem. Soc., Chem. Commun., 1985, 742; P. C. B. Page, M. B. van Niel, and D. Westwood, J. Chem. Soc., Perkin Trans. 1, 1988, 269.
- 13 W. G. Bentrude, W. N. Setzer, and L. D. Quin in 'Phosphorus-32 NMR Spectroscopy in Stereochemical Analysis,' eds. J. G. Verkade and L. D. Quin, VCH, Florida, 1987, pp. 365, 391.
- 14 F. Mathey and J. P. Lampin, Tetrahedron Lett., 1972, 1949.
- 15 E. Ciganek, J. Org. Chem., 1970, 35, 3631.
- 16 V. Gomez-Aranda, J. Barluenga, and V. Gotor, *Tetrahedron Lett.*, 1974, 977.
- 17 L. A. Cates and V. S. Li, J. Pharm. Sci., 1982, 71, 308; J. F. Labarre, Top. Curr. Chem., 1982, 102, 1.
- 18 P. C. Crofts, in 'Organic Phosphorus Compounds,' eds. G. M. Kosolapoff and L. Maier, Wiley, New York, 1973, vol. 6, p. 123.

Received 27th June 1988; Paper 8/02529K